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Abstract

First order partial differential equations (PDE) are often the main tool to model problems in optimal control, differential games, image
processing, physics, etc. Dependent upon the particular application, the boundary conditions are specified either at the initial time instant,
leading to an initial value problem (IVP), or at the terminal time instant, leading to a terminal value problem (TVP). The IVP and TVP have
in general different solutions. Thus introducing a new model in terms of a first order PDE one has to consider both possibilities of IVP and
TVP, unless there is a direct physical indication. In this paper we also particularly answer the following question: how should the initial value
at the initial surface and the terminal value at the terminal surface be coordinated in order to generate the same solution? One may expect
that for a given initial value the consistent terminal value is the value of the IVP solution at the terminal surface. The second (time-varying)
example in this paper shows that, generally, this is not true for non-smooth initial conditions. We discuss also the difference between the IVP
and TVP formulations, the connection between the Hamiltonians arising in IVP and TVP.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For nonlinear first-order PDEs one has a boundary value
problem of the form [10,7]:

F(x, u, �u/�x) = 0, x ∈ � ⊂ Rn, (1)

u(x) = v(x), x ∈ M ⊂ ��.

This form also captures the Hamilton–Jacobi equation

�u

�t
+ H

(
x,

�u

�x
, t

)
= 0 (x, t) ∈ �, (2)
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if we treat the time variable as one of the components of the
state vector x: (x, t) → x.

If u(x), F (x, u, p) ∈ C2, then the local construction of the
solution to the problem (1) is known to be reduced to the in-
tegration of the following system of (regular) characteristics
(p = �u/�x) [7,1]:

ẋ = Fp, u̇ = 〈p, Fp〉, ṗ = −Fx − pFu. (3)

In optimal control and differential games, the structure of the
Hamiltonians F and H is related to the dynamic equations and
the cost function of the problem (see Section 3). In the problems
of image processing, and particularly shape-from-shading, the
structure of the Hamiltonians changes due to the physics of the
problem. The 2D image is described by the intensity function
I (x), where x = (x1, x2) ∈ G is a point of the image region
G. Under certain assumptions about the reflection physics, the
intensity of the image appears to be a function of the form:
I (x) = 〈�, n(x)〉, where n(x) is the unit normal to the surface
at the point x ∈ G, and � = (�1, �2, �3) is the fixed direction
from which the light is coming. Expressing the normal through
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the partials of the surface height x3 = u(x1, x2) leads to the
following first-order PDE [12,4,15]:

I (x) = −�1ux1 − �2ux2 + �3√
1 + u2

x1
+ u2

x2

. (4)

In many problems of physics and control one or both of the
functions u(x), F(x, u, p) may be non-smooth and the solution
to the problem (1) must be understood in a generalized sense.
One of the most powerful approaches to the generalization of
the solution developed during the recent decades is the theory
of viscosity solutions [11,3]. As one can see from the definition
in the next section the viscosity theory assigns to Eqs. (1), (2),
(4) two types of solutions—that for the IVP and TVP. This
paper is aimed to give a comparison of the solutions to IVP
and TVP and to show that when introducing a new model in
terms of a first order PDE one has to analyze both possibilities
of IVP and TVP.

The method of characteristics, appropriately generalized in
[13], is one of the attractive construction methods for the gen-
eralized (viscosity) solutions [8,9].

This paper is organized as follows: in Section 2, we review
the basics from the viscosity theory and the related boundary
conditions. In Section 3, we formulate the initial and the TVPs
in optimal control. Section 4 presents some illustrative obser-
vations. Conclusions are summarized in Section 5.

2. Viscosity solution and boundary conditions

To get a unique solution to the PDE (4), one needs to spec-
ify appropriate boundary (initial, terminal) conditions [10,5].
A comprehensive analysis of possible boundary conditions in
shape-from-shading problems is given in [12]. Further, one
needs to distinguish between two types of problems—the ini-
tial value problem (IVP) and the TVP. The surface M in (1) for
the IVP and the TVP correspondingly has the form:

M = M0 = {(x, t) ∈ Rn+1 : t = t0},
M = M1 = {(x, t) ∈ Rn+1 : t = t1}, (5)

so that M is a “part” of the overall boundary ��=M0 ∪M1. In
time-invariant setting the surface M may coincide with ��, or
may need to be specified specially. The viscosity solution theory
suggests general approach for specifying M and formulating
the boundary conditions [3]. In differential game theory, M is
called the “usable” part of the boundary, and certain necessary
conditions for M are given in [10].

The boundary value problem formulation in the shape-from-
shading problems is quite different from optimal control. In the
shape-from-shading problem one needs to know the shape on
a part of the boundary. Such a boundary shape generally is not
available. So, one can reconstruct the shape up to an arbitrary
boundary function. On the other hand, the shape reconstruction
is sufficient up to an additive constant: u(x) − C. When the
boundary surface degenerates into a point this constant C can
be considered as the value of the solution at that point. Such
boundary conditions are known and used in differential games
[10] in the framework of the method of characteristics.

In several papers on shape-from-shading the extremum
points (maximum or minimum) of the solution are character-
ized as a degenerate boundary. The boundary conditions may
have a special type of singularity. As shown in [12], generally
three types of edges (parts of boundary) may arise: apparent
contours, grazing light edges and shadow edges. The first and
second types of edges are shown to have a singularity similar
to that in the state constraint optimal control problem [2,6].
The method of (generalized) characteristics states that a fam-
ily of regular or singular characteristics is projected on this
boundary [14].

Finally, we recall the definition of a viscosity solution for
IVP and TVP in terms of scalar test functions �(x) ∈ C1(�)

[3].

Definition. A continuous function u : � + M → R1 is called
the viscosity solution of IVP (1) if:

(1) u(x) = v(x), x ∈ M;
(2) for every test function �(x) ∈ C1(�) such that local mini-

mum (maximum) of u(x) − �(x) is attained at x0 ∈ � the
following inequality holds:

F(x0, u(x0), �x(x
0))�0,

(F (x0, u(x0), �x(x
0))�0). (6)

For the definition of a viscosity solution to a TVP the inequal-
ities in (6) must be changed to opposite ones with, generally, a
different terminal surface M.

3. Initial and terminal value problems in optimal control

TVPs typically arise in optimal control, while IVPs more
often model problems in physics or mechanics. Though many
practical problems of calculus of variations, optimal control or
differential games generate a TVP, for some constructions IVP
may also be considered. A TVP arises when one is interested
in the cost function as a function of the left end of the optimal
path, while an IVP arises in case of the interest in the right end
of the path.

In this section we use the letter u for control variable, while
the scalar solutions to the PDE will be denoted as S or V.

3.1. Time-varying optimal control and calculus of variations’
problem

Consider a traditional formulation of the optimal control
problem, which includes the relevant ODE:

ẋ = f (x, u, t), u ∈ U ⊂ Rm, t ∈ [t0, t1], (7)

the endpoint conditions:

x(t0) = x0, x(t1) = x1, x ∈ Rn, (8)
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and the cost function:

J [x, u] =
∫ t1

t0

L(x, u, t) dt + �0(x(t0), t0) + �1(x(t1), t1)

→ min
u(t)

. (9)

Here x is the n-dimensional state vector, u is the m-dimensional
vector of the control inputs, U is a convex constraint set in Rm,
and t1 > t0.

Introduce the function on both (left and right) ends of the
optimal path:

J ∗(x0, t0; x1, t1)

= min
u(t)

(∫ t1

t0

L(x, u, t) dt + �0(x
0, t0) + �1(x

1, t1)

)
.

The dynamic programming approach gives that the function
(of the left end)

S(x, t) = min
(x1,t1)

J ∗(x, t; x1, t1), (x1, t1) ∈ M1,

is the solution of the (terminal value) problem

�S

�t
+ Hl

(
x,

�S

�x
, t

)
= 0, (x, t) ∈ �, (10)

S(x, t) = �1(x, t), (x, t) ∈ M1 (M1 ⊂ ��),

while the right end function

V (x, t) = min
(x0,t0)

J ∗(x0, t0; x, t), (x0, t0) ∈ M0,

is the solution of the (initial value) problem

�V

�t
+ Hr

(
x,

�V

�x
, t

)
= 0, (x, t) ∈ �, (11)

V (x, t) = �0(x, t), (x, t) ∈ M0 (M0 ⊂ ��),

where M1 and M0 are the given terminal and initial surfaces
(manifolds).

Eqs. (10) and (11) are written in terms of different Hamil-
tonians, which we call left (Hl) and right (Hr ) Hamiltonians.
Dynamic programming gives the following relations for them:

Hl(x, p, t) = min
u∈U

(〈p, f (x, u, t)〉 + L(x, u, t)),

Hr(x, p, t) = max
u∈U

(〈p, f (x, u, t)〉 − L(x, u, t)), (12)

so that one has

Hr(x, p, t) = −Hl(x, −p, t). (13)

Similar relation holds for the extended Hamiltonians, i.e. in-
cluding the time partials �S/�t , �V/�t . In a typical optimal
control problem the left Hamiltonian in (12) is used.

For the calculus of variations problem, where ẋ=f ≡ u, U=
Rn, the Hamiltonians Hl and Hr are the Legandre transforms
of L(x, u, t) = L(x, ẋ, t):

Hl(x, p, t) = min
ẋ

(〈p, ẋ〉 + L(x, ẋ, t)) (p = −Lẋ(x, ẋ, t)),

Hr(x, p, t) = max
ẋ

(〈p, ẋ〉 − L(x, ẋ, t)) (p = Lẋ(x, ẋ, t)),

(14)

and the Hamilton–Jacobi equations have the same form
(10), (11).

3.2. Time invariant optimal control and calculus of variations’
problem

Let the functions f, L, �0, �1 in (11)–(13) be independent
of time variable, f (x, u), L(x, u), �0(x), �1(x), and the sets
�, M0, M1 be subsets of Rn. Then the (value or Bellman) func-
tions S(x), V (x) are also time-invariant and satisfy the dynamic
programming equations:

Hl(x, p) = min
u∈U

(〈p, f (x, u)〉 + L(x, u)) = 0 (p = �S/�x),

Hr(x, p) = max
u∈U

(〈p, f (x, u)〉 − L(x, u)) = 0 (p = �V/�x),

(15)

subject to appropriate boundary conditions on M1, M0, see (10),
(11). Comparing with (10), (11), there are no time partials in
Eqs. (15).

In case of the calculus of variations problem, the above equa-
tions take the form:

Hl(x, p) = min
ẋ

(〈p, ẋ〉 + L(x, ẋ)) = 0 (p = �S/�x),

Hr(x, p) = max
ẋ

(〈p, ẋ〉 − L(x, ẋ)) = 0 (p = �V/�x). (16)

Note that for the time-optimal control problem, when
L(x, u) ≡ 1, usually a more simple Hamiltonian is considered
so that the dynamic programming equation (e.g. for the “right”
case) takes the form

Hr(x, p) = 1 (Hr(x, p) = max
u∈U

〈p, f (x, u)〉).

It is interesting to note that the Hamilton–Jacobi equation of
a similar form arises in a calculus of variations’ problem with
the Lagrangian homogeneous in ẋ (see the next subsection).

Remark 1. The above Hamilton–Jacobi equations in calculus
of variations require the assumption

det Lẋẋ 
= 0

in a certain set of variables (x, ẋ, t). For the time-invariant case
this means that the Lagrangian L(x, ẋ) is non-homogeneous
in ẋ (see the next subsection). Such inequality is required for
the existence of a solution for ẋ to equations p = ±Lẋ(x, ẋ, t)

(extremum conditions in (14) and (16)) via the implicit function
theorem. Dependent upon the set U and the other parameters of
the problem this condition may be crucial for optimal control
problems as well.
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3.3. Calculus of variations problem with a homogeneous
Lagrangian

Consider a calculus of variations problem with a homoge-
neous Lagrangian:

L(x, �ẋ) = �L(x, ẋ), � > 0.

Differentiating this identity in � with respect to � and letting
� = 1 one can get the following representation for L(x, ẋ):

L(x, ẋ) = 〈ẋ, Lẋ(x, ẋ)〉.
This means that the Hamiltonians (16) identically vanish:
Hl(x, p) ≡ 0, Hr(x, p) ≡ 0, since one has p = ±Lẋ(x, ẋ).
Furthermore, differentiating the latter identity in ẋ with respect
to ẋ, one gets the other identity: Lẋẋ ẋ = 0. Since this linear
equation in ẋ has non-trivial solutions one has det Lẋẋ = 0.

The above considerations show that for the functions S(x),
V (x) one needs the Hamilton–Jacobi equation in a different
form than the one in (16). The Hamilton–Jacobi theory for
the problems with homogeneous Lagrangians one can find, for
instance, in [16]. Though the degeneracy det Lẋẋ = 0 does not
allow to solve the equation p = Lẋ(x, ẋ, t) for ẋ, the other
condition,

det 1
2 (L2)ẋẋ = det(LẋL

T
ẋ + LLẋẋ) 
= 0,

may be fulfilled in generic case. Here Lẋ is a column-vector,
LT

ẋ denotes the transpose of Lẋ . The above condition allows to
solve the equation

p = (L2)ẋ/2 = LLẋ ,

thus defining a function ẋ = �(x, p). One can show that this
function is also homogeneous in p: �(x, �p)= ��(x, p),

� > 0. Introduce now the (right) Hamiltonian as

Hr(x, p) = L(x, �(x, p)) (17)

and recall that the first variation formula gives [7]

�S/�x = Lẋ(x, ẋ), �V/�x = −Lẋ(x, ẋ). (18)

Using now the vector �S/�x = p/L(x, ẋ) as the second argu-
ment in the Hamiltonian and assuming that L > 0 one can get

Hr

(
x,

�S

�x

)
= L

(
x, �

(
x,

p

L

))
= L(x, �(x, p))

L(x, ẋ)
= 1. (19)

Similarly, in accordance to (13), letting Hl(x, p) =
−L(x, �(x, −p)), one can get

Hl

(
x,

�V

�x

)
= −1. (20)

Note that in many problems the degeneracy det Lẋẋ = 0 can
be removed by choosing an appropriate component of the vector
x as a new independent variable. Then Eqs. (19), (20) take the
form (10), (11), (14).

One of the best and important illustrations for a homogeneous
problem is the problem of the shortest (geodesic) line on a
Riemannian manifold when

L(x, ẋ) = √〈G(x)ẋ, ẋ〉, (L2(x, ẋ) = 〈G(x)ẋ, ẋ〉).
Here G(x) is a symmetric non-singular matrix, the metric
tensor of a Riemannian manifold with local coordinates x, the
Lagrangian L is positive, homogeneous, and of order one.
Further,

(L2)ẋẋ/2 = G(x), p = G(x)ẋ, ẋ = G−1(x)p = �(x, p),

Hr(x, p) = −Hl(x, p) =
√

〈G−1(x)p, p〉.
Thus, both functions S(x), V (x) satisfy the same Hamilton–
Jacobi equation:〈
G−1(x)

�S

�x
,
�S

�x

〉
= 1.

It is proved in [16] that in general homogeneous case one has

L2(x, ẋ) = 〈G(x, ẋ)ẋ, ẋ〉, G(x, �ẋ) = G(x, ẋ), � > 0,

i.e. the matrix G now depends upon ẋ and is homogeneous of
the order zero in ẋ.

3.4. A note on terminology

The terms IVP and TVP are quite clear for time varying
problems like (10), (11), in which the boundary values typically
are specified on the surfaces

M0 = {(x, t) ∈ Rn+1 : t = t0}, M1={(x, t) ∈ Rn+1 : t = t1},
(21)

where M0 corresponds to the initial time instant, and M1 to
the terminal time instant. The characteristic flow goes from
M0 to M1.

The situation is not that obvious in case of time-invariant
problems. The traditional terminology says that we have just a
boundary value problem for any of the two possible definitions
of the solution in (6). Dependent upon the signs of the inequali-
ties in (6), the problem (1) produces two viscosity solutions. It is
necessary to distinguish between these two solutions. To avoid
the introduction of new terminology, it is natural to call these
two definitions and corresponding viscosity solutions as IVP
and TVP solutions. The IVP is the one, for which the signs in
(6) correspond to the IVP in the time-varying problem, and the
characteristic flow departs from the boundary surface M =M0.
For the TVP, the signs in (6) correspond to the TVP in the time-
varying problem, while the characteristic flow approaches the
boundary surface M = M1. The direction of the flow is natu-
rally defined using the auxiliary “time”-variable introduced by
the equations of regular characteristics (3): ẋ = dx/dt = Fp.

Thus, the pairs (F, M0) and (F, M1), consisting of the
Hamiltonian and the boundary surfaces, produce two different
viscosity solutions in general.

In some problems the boundary surfaces for the IVP and TVP
may coincide, M0 =M1 =M , say, M =��. This is not the case
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for the problems with boundary surfaces of the form (21). We
will denote the viscosity solution u(x) of the IVP (of the TVP)
produced by the pair (F, M) by I (F, M) (by T (F, M)). Gen-
erally, I (F, M) 
= T (F, M). One can verify that I (F, M) =
T (−F, M). Thus, I (F, M) 
= T (F, M) = I (−F, M).

In that sense, one can state that the equations F = 0 and
−F = 0 have in general different viscosity solutions, which is
not the case for the classical solution. If one prefers to solve
IVP rather than TVP, then the inverse time must be used, which
is equivalent to changing the sign in front of F (or H).

Generally, with a given Hamiltonian H(x, p) one can asso-
ciate eight boundary value problems since for each of the four
Hamiltonians,

H(x, p), −H(x, p), −H(x, −p), H(x, −p),

one can formulate a TVP or IVP. While this is mathematically
well-defined and possible, only half of them are physically
meaningful (see examples).

Thus, summarizing the considerations of IVP and TVP in
terms of the Bellman function as a function of the left or the
right end of an optimal path, one can state that the following
Hamiltonians may arise in different problems:

±H(x, ±p).

The sign in front of H switches between the IVP and TVP,
while the sign in front of p switches between the left and the
right end.

We consider here three examples demonstrating the diver-
sity of the IVP and TVP solutions of the left and right HJB-
equations.

4. Examples

4.1. Control of a car

This example illustrates the time-invariant case with different
boundary surfaces M and different solutions for IVP and TVP.
Consider the time-optimal control problem which is a particular
case of the game of two cars by Isaacs [10]. The dynamics are
given by

ẋ = −uy, ẏ = ux − 1, |u|�1.

The control objective is to bring the state vector (x, y) to the
terminal circle,

M : x2 + y2 = l2 (0� l < 1),

in minimum-time.
The corresponding Hamiltonian has the form:

H(x, y, p, q) = min
u

(−uyp + uxq − q) + 1

= − |qx − py| − q + 1.

The optimal time V (x, y) for this problem is the TVP sol-
ution to

H(x, y, �V/�x, �V/�y) = 0, V (x, y) = 0, (x, y) ∈ M .

-2

0

2

-2

0

2

2

4

Fig. 1. The value functionV (x, y).

Fig. 2. The set of optimal paths (characteristics).

The graph of the function V (x, y) is given in Fig. 1, and the
corresponding optimal paths are shown in Fig. 2. This solu-
tion can be reconstructed from the considerations in Isaacs’
book [10]. The so-called usable part of the boundary, the set
M1, happens to be the upper part of the circle M. Usually this
problem is solved by switching to the IVP for the Hamiltonian
with the opposite sign −H(x, y, p, q) with the same usable
boundary M1.

The formally considered IVP for the problem:

H(x, y, �V/�x, �V/�y) = 0, V (x, y) = 0, (x, y) ∈ M0,

has the usable part M0 (lower part of M) and a solution of
negative sign.

One can find physical interpretation only for the following
four cases:

IVPs for:

problem 2 : −H(x, y, p, q) = 0,

problem 3 : −H(x, y, −p, −q) = 0.
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TVPs for:

problem 1 : H(x, y, p, q) = 0,

problem 4 : H(x, y, −p, −q) = 0.

For the problems 1,2 one has M = M1 and for the problems
3,4—M = M0.

The solutions Vi(x, y) of the ith problem are related as fol-
lows:

V1(x, y) = V2(x, y), V3(x, y) = V4(x, y) = V1(−x, −y).

The following remark explains the difference between
the problems 1,2 and 3,4. The above dynamic equations
ẋ = −uy, ẏ = ux − 1 are written in Cartesian coordinates
(x, y) of the center of the terminal circle in the frame con-
nected with the car. In the problems 1,2 with the usable part
M1 the value function depends on the left end.

In the problems 3,4 with the usable part M0 one can consider
the car’s coordinates in the frame connected with the center
of the terminal circle. The value function depends on the right
end. Denote this coordinates as X, Y . One has X=−x, Y =−y,
which maps M1 onto M0. Thus,

Ẋ = −uY , Ẏ = uX + 1.

This leads to the Hamiltonian of the problem 4.

4.2. A 2D differential game

By this example we investigate the consistency between the
initial and terminal values, which may generate the same solu-
tion. Such a question may be addressed both to a time-invariant
or time-varying problem, the latter being more convenient for
a geometrical illustration. Consider a time-varying IVP with
non-smooth initial data given by [13]:

F(x, y, p, q) = p +
√

a2 + q2 − x

√
b2 + q2 = 0, x > 0,

(22)

u(0, y)=−|y|+cy (p = �u/�x, q=�u/�y, a, b, c=const).

One can show that Eq. (22) is the HJBI equation for the fol-
lowing fixed-time differential game with one spatial variable
and a non-smooth terminal cost function:

ẏ = u1 + (T − t)v1, 0� t �T , u2
1 + u2

2 �1, v2
1 + v2

2 �1,

J = − |y(T )| + cy(T ) +
∫ T

0
(au2 + b(T − t)v2) dt

→ min
ui

max
vi

.

One can see now that Eq. (22) is written in reverse time x=T −t .
IVP solution: Set a = b and c = 0. We first describe the

function providing the IVP solution and then give a sketch of
its construction. Such solution is given by

u(x, y) = min[u+(x, y), u−(x, y)] = −|y|+
√

a2+1(x2/2−x),

u±(x, y) = ∓y +
√

a2 + 1(x2/2 − x), (23)

everywhere in the half-plane y�0 except for the region:

x�1, |y|� (x − 1)2

2
√

a2 + 1
,

where the solution is equal to the following smooth function
v(x, y):

v(x, y) = −
√

a2 + 1/2 + a

√
(x − 1)4/4 − y2.

The smooth branches u±(x, y) can be constructed using the
system of (regular) characteristics with the corresponding initial
conditions:

ẋ = Fp = 1, ẏ = Fq = q(1 − x)/

√
a2 + q2,

u̇ = pFp + qFq = p + qFq, ṗ = −Fx =
√

a2 + q2,

q̇ = −Fy = 0,

x(0) = 0, y(0) = s, u = −|s|, p(0) = −
√

a2 + 1,

q(0) = sign s, s ∈ R. (24)

The first equation ẋ = 1 means that the variable x actually co-
incides with “time”, the independent parameter of the differ-
entiation in (24). Since q is a constant along the solutions of
(24) and ẏ, u̇ are linear in x the integration of the system (see
[5, Chapter 3]) leads to the solutions (23) quadratic in x. The
integration gives also that regular characteristics of the prob-
lem (24) form the following one-parametric family of parabolas
in the (x, y)-plane with the vertical symmetry axes x = 1, see
Fig. 3 (left):

y − C = qx(1 − x/2)√
a2 + q2

, C = const. (25)

The solution u=v(x, y) in the set between the two extremal
parabolas with C = ±1/2

√
a2 + 1 and x > 1 is constructed by

integration of the equation for u̇ along the following funnel of
one-parametric family of characteristics (with the parameter q),
starting at the point (1, 0):

y(x) = −q(x − 1)2/[2
√

a2 + q2], |q|�1. (26)

One can see that the resulting solution u(x, y) is smooth (and
satisfies the equation in classical sense) everywhere except for
the segment y = 0, 0�x�1, where u+(x, y) = u−(x, y). The
graph of this solution and the related characteristics are shown
on Fig. 3 (left). One has to check that the viscosity requirements
are fulfilled on that segment. First of all, one can show that
there is no smooth test function �(x, y) such that min(u − �)

is attained at a some point of the considered segment. In [13],
one parametric family of test functions is suggested

�(x, y) = (1 + �)u+(x, y)/2 + (1 − �)u−(x, y)/2, |�|�1,

for which max(u − �) is attained at the points of the segment,
except for the right end x = 1. Thus one has to check the
inequality

F(x, 0, �x, �y) = (x − 1)(
√

a2 + 1 −
√

a2 + �2)�0,
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Fig. 3. Solution of IVP (left) and TVP (right) and related characteristics.

for each |�|�1 and 0�x < 1. For the constructed function it
is obviously satisfied, though for other values of the problem
parameters it may be violated, see [13]. Consideration of the
point x=1, y=0 proceeds as follows. First, for the constructed
solution u(x, y) the function u(x, 0) is smooth in x at x=1 and
ux(x, 0) = 0. This means that for every test function �(x, y),
supplying the maximum (or minimum) to u−� at x =1, y =0,
one has �x =0. Next, one observes that F(1, 0, p, q)=p, thus
F(1, 0, �x, �y) = �x = 0 regardless of the value of �y .

TVP solution: Fix now some positive value of x, say xT = 3.
For this fixed xT , the above IVP solution takes the values:

u(3, y) = −|y| + 3

2

√
a2 + 1, |y|� 2√

a2 + 1
,

u(3, y) = −
√

a2 + 1/2 + a

√
4 − y2, |y|� 2√

a2 + 1
. (27)

Now consider the TVP on the left half-plane x�3 for
Eq. (22) with the terminal conditions (27). One can show
that the solution of this TVP coincides with the previous IVP
solution everywhere except for the region

x�1, |y|� (x − 1)2

2
√

a2 + 1
,

where the TVP solution equals v(x, y), i.e. the condition
u(0, y) = −|y| is not fulfilled, and therefore the solution is
smooth (and satisfies the equation in classical sense) every-
where, except for the point x = 1, y = 0, which can be treated
similar to the IVP case. The graph of this solution and the
related characteristics are given on Fig. 3 (right). So, starting
from non-smooth initial data, then “reflecting” the solution
at x = 3, one gets certain smoothening of the solution. If we
continue to “reflect” the solutions, by solving consequently the
IVP and the TVP, the solution will be smooth. Fig. 4 shows
the graph of the both IVP and TVP solutions.

4.3. A scalar eikonal equation

The eikonal equation, known from the geometrical optics,
may arise also in shape-from-shading (in case of a vertical light
source, when one has �1 = �2 = 0 in (4)) and computer vision
problems [17]. The simple eikonal equation below, see also
[5], demonstrates the difference between the IVP and the TVP
solutions in the case, when the boundary surface for the both
problems coincides with ��. Consider the following problem
with scalar x:

F ≡ u2
x − 1 = 0, x ∈ (0, 1), u(0) = 0, u(1) = 0,
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Fig. 5. IVP and TVP solutions and their approximations.

where � = (0, 1), and M = �� consists of two points {0, 1}.
One can show that the I (F, M) is the function u = h(x):

h(x) = x, x ∈ [0, 1/2], h(x) = 1 − x, x ∈ [1/2, 1],
and the T (F, M) is the function u = −h(x), see Fig. 5.

For this example one can calculate the functions ±h(x) as
the limits of the solutions to the following second-order ODE:

±εuxx + u2
x − 1 = 0, u(0) = 0, u(1) = 0,

when the positive small parameter ε tends to zero. The sign “−”
generates the IVP, while the sign “+” generates the TVP. The
solutions to this second order ODE for three different positive
and negative values of ε are depicted on Fig. 5.

One can check the characteristic flow for the eikonal equation
by writing the characteristic equation for x using F =p2 −1=0
(p = ux):

ẋ = Fp = 2p = 2ux .

So the sign of ẋ depends on the derivative of u(x)=h(x), and the
characteristic flow for the IVP goes from the set M, endpoints
of the segment [0, 1], towards the inside of the interval (0, 1),
while for the TVP goes towards M.

5. Conclusions

This paper discusses the initial value and the terminal
value problems for non-smooth viscosity solutions of the
Hamilton–Jacobi equation. If the boundary conditions are not
derived from the physics of the problem, then special con-
sideration should be given to the relevant IVP/TVP problem
formulation. In some problems there is no straightforward in-
dication from the physics of the problem, as whether IVP or
TVP should be formulated, so that this issue requires further
investigation.

References

[1] V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential
Equations, Springer, New York, 1988.

[2] I. Cappuzzo-Dolcelta, P.L. Lions, Viscosity solutions of Hamilton–Jacobi
equations and state-constraints, Trans. Amer. Math. Soc. 318 (1990)
643–683.

[3] M.G. Crandall, H. Ishii, P.L. Lions, User’s guide to viscosity solutions
of second order partial differential equations, Bull. Amer. Math. Soc. 27
(1) (1992) 1–67.

[4] P. Dupuis, J. Oliensis, On optimal control formulation and related
numerical methods for a problem in shape reconstruction, Ann. Appl.
Probab. 4 (2) (1994) 287–346.

[5] C.L. Evans, Partial Differential Equations, AMS, Providence, RI, 2002.
[6] W.H. Fleming, M.H. Soner, Controlled Markov Processes and Viscosity

Solutions, Springer, New York, 1993.
[7] M. Giaquinta, S. Hildebrandt, Calculus of Variations I, II, Springer, New

York, 1996.
[8] N. Hovakimyan, Differential Games of Pursuit-Evasion in Manifolds,

Ph.D. Thesis, 1992.
[9] N.V. Hovakimyan, A.A. Melikyan, Geometry of pursuit-evasion on

second order rotation surfaces, Dynamics and Control 10 (2000)
297–312.

[10] R. Isaacs, Differential Games, Wiley, New York, 1965.
[11] P.L. Lions, Generalized solutions of Hamilton–Jacobi equations, Pitman,

London, 1982.
[12] P.L. Lions, E. Rouy, A. Tourin, Shape-from-shading, Viscosity solutions

and Edges, Numer. Math. 64 (1993) 323–353.
[13] A. Melikyan, Generalized Characteristics of First Order PDEs:

Applications in Optimal Control and Differential Games, Birkhäuser,
Boston, 1998.

[14] A.A. Melikyan, Singular Characteristics of HJBI equation in State
Constraint Optimal Control Problems, Preprints of IFAC Symposium
“Modeling and control of Economic Systems”, September 6–8, 2001,
Klagenfurt, Austria, pp. 155–156.

[15] D. Ostrov, Viscosity solutions and convergence of monotone schemes for
synthetic aperture radar shape-from-shading equations with discontinuous
intensities, SIAM J. Appl. Math. 59 (6) (1999) 2060–2085.

[16] H. Rund, The Hamilton–Jacobi Theory in the Calculus of Variations, D.
Van Nostrand Company LTD, London, New York, 1966.

[17] A. Tannenbaum, Three snippets of curve evolution theory in computer
vision, Math. Computer Modelling J. 24 (1996) 103–119.


