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Abstract

This paper studies decentralized event-triggering in networked control sys-
tems (NCSs), where all communication/computation tasks are executed asyn-
chronously. A decentralized event-triggering scheme is proposed under this
framework. We show that if the weighted sum of all minimal task periods and
all types of delays is bounded, the resulting NCS is asymptotically stable.
This condition suggests a tradeoff between the system performance and the
overall communication and computational resources, which can serve as basis
for scheduling data traffic over the network and also computational tasks.

1. Introduction

Networked control systems (NCSs) are widely used throughout world-
wide infrastructure for their advantages in terms of lower system costs due
to streamlined installation procedures. In these systems, the feedback loop
is closed via a communication network, and the control tasks are executed
by computers. However, the introduction of digital techniques in the systems
raises important issues regarding the impact of communication/computational
limitations on the control system’s performance. Because of the digital na-
ture, both communication and computation tasks are executed in a discrete
manner. Moreover, the hardware limitations in their turn add task delays
in the loop. So one important issue in the implementation of these systems
is to identify methods that more effectively use the available communication
and computational resources.
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For these reasons, the timing issue in NCSs drew significant attention
over the past years. Traditional approaches focus on real-time communi-
cation constraints and determine the maximum allowable transfer interval
(MATI) between two subsequent message transmissions that ensures closed-
loop stability [1, 2, 3]. However, because the MATI is computed before the
system is deployed, it must ensure performance levels over all possible vari-
ations in the system. Consequently, the MATI may be conservative in the
sense of being shorter than necessary. Recently, event-triggering schemes
were introduced in NCSs, where tasks are executed whenever a pre-specified
event occurs. Recent papers [4, 5, 6] show that event-triggering schemes
can largely reduce the workload compared with the periodic task models.
Prior work in decentralized implementation of event-triggering was reported
in [7, 8].

A critical assumption in the prior work is that at any time instant the
state information loaded in the computation of the control tasks must be con-
sistent. In other words, once the controller receives (part of) the state infor-
mation, every component in the controller must use the data synchronously.
Those who receive the data earlier cannot use the data until all components
are ready for using this data. Such a requirement may result in the waste of
communication and computational resources. A more reasonable scenario is
that every component uses the data whenever they receive it. In that case,
there may be multiple versions of the state in the controller at a fixed time
instant and the control inputs can be computed in an asynchronous manner.
Under such a framework, this paper proposes a decentralized event-triggering
scheme. This scheme allows asynchronous transmission of the state from the
plant to the controller. The control inputs are computed and actuated, also
in an asynchronous way. We show that under this scheme, if the weighted
sum of all minimal task periods and all possible delays is bounded, the NCS
is asymptotically stable.

The difference between this result and the prior work in [7] can be sum-
marized according to the following arguments: first, we relax the requirement
of consistency in the state information at the controller; second, by placing a
minimal task period, our scheme theoretically ensures that the task periods
are greater than a positive constant, while this property cannot be theoret-
ically guaranteed in [7]; third, but not least, we provide a global tradeoff
condition between all transmission periods and all kinds of allowable delays
that ensures asymptotic stability. It indicates a relation between the sys-
tem performance and the total communication and computation resources.
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The prior work in [7] presents only a local tradeoff relation, i.e. the tradeoff
between an individual subsystem’s task periods and its associated allowable
delays. To summarize, the result in [7] is a special case of this work.

The paper is organized as follows. Section 2 formulates the problem. The
decentralized event-triggering scheme is introduced in Section 3. Bounds on
the task periods and task delays are derived in Section 4. An illustrative
example is presented in Section 5. Section 6 draws the conclusions, while all
the proofs are in the appendix.

2. Problem Formulation and System Framework

2.1. Notations

We denote by R
n the n-dimension real vector space and by R

+ the real
positive numbers. Let R

+
0 = R

+ ∪ {0}. We also denote by Z
+ the set of

positive integers and let Z
+
0 = Z

+ ∪ {0}. ‖ · ‖ denotes the Euclidean norm
of a vector. For a matrix, ‖ · ‖ denotes the matrix norm induced by the
Euclidean vector norm. The symbol ∨ denotes the logical operator OR,
where E1 ∨ E2 is true when either E1 or E2 is true. The symbol ∧ denotes
the logical operator AND, where E1 ∧ E2 is true when both E1 and E2 are
true. The symbol · denotes the logical operator NOT, where E is true when
E is false. Given two functions α : Rm → R

l and β : Rn → R
m, we define

α ◦ β : Rn → R
l to be the function α ◦ β(x) = α(β(x)) with x ∈ R

n. Given
a set A with finite elements, let |A| be the cardinality of A.

Given n,m ∈ Z
+, let N = {1, 2, · · · , n} and M = {1, 2, · · · , m}. For

any j ∈ M, Nj is a subset of N . Given a collection of scalars xi→j with
j ∈ M, i ∈ Nj , we define an extended vector 〈xi→j〉j∈M, i∈Nj

∈ R

∑

j∈M |Nj |,
where

〈xi→j〉j∈M, i∈Nj
=







{xi→1}i∈N1

...
{xi→m}i∈Nm







and {xi→j}i∈Nj
is the vector, whose entries are sorted by the index i. If the

sets M and Nj are clear in context, we use 〈xi→j〉 to simplify the notation.
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2.2. Problem Formulation

Consider a state-feedback NCS with n sensors and m actuators. Let
N = {1, · · · , n} and M = {1, · · · , m}. The state equation is

ẋ(t) = F (x(t), u(t)) ,

x(0) = x0, (1)

where x : R+
0 → R

n and u : R+
0 → R

m are the system state and the control
input, respectively, x0 ∈ R

n is the initial condition, and F : Rn × R
m → R

n

is continuous, locally Lipschitz, and F (0, 0) = 0.
Let xi : R

+
0 → R be the ith entry of the state (called the ith sub-state).

Then xi satisfies

ẋi = Fi (x(t), {uj(t)}j∈Ai
) (2)

where uj : R
+
0 → R is the jth entry of the control input (called the jth sub-

input) with j ∈ M, Ai ∈ N is the set of sub-inputs that drive xi’s dynamics,
Fi : R

n × R
|Ai| → R is locally Lipschitz, and

F (x(t), u(t)) =







F1 (x(t), {uj(t)}j∈A1
)

...
Fn (x(t), {uj(t)}j∈An

)






.

Remark 1. We assume xi and uj are scalars in this paper for notational sim-
plicity. However, our result can be easily extended to the multi-dimensional
case, where xi ∈ R

ni, uj ∈ R
mj and

∑

i∈N ni = n,
∑

i∈Mmj = m.

The system structure is shown in Figure 1. We assume that sensor i
(Si) can only continuously sample xi(t). An event generator (EG, Ei) is
located at Si to determine when to transmit the sampled sub-state xi to the
controller through a real-time network. At the controller, there are m tasks;
task j (Tj) computes the jth sub-input based on the received data. Once the
computation is done, the new sub-inputs will be transmitted, asynchronously,
back to the plant and actuated, again, through a real-time network.

We define several time instants as follows:

• rs, ki : the transmission release time of the kth transmission generated
by Ei;
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Figure 1: An event-triggered NCS

• f s, k
i : the transmission finishing time of the kth transmission generated
by Ei;

• rc, ki→j: the release time of the computation in Tj that is triggered by the

reception of the data in the kth transmission from Ei.

• rc, lj : the computation release time of the lth computation in Tj ;

• fa, k
i→j: the finishing time of the actuation of Tj ’s output that is triggered

by the reception of the data in the kth transmission from Ei..

• fa, l
j : the finishing time of the actuation of the lth output of Tj.

Let Nj ⊆ N be the index set of the sub-states that Tj receives. We know

that {rc, lj }∞l=0 and {fa, l
j }∞l=0 are the sorted sequences of {rc, ki→j}i∈Nj , k∈Z+

0
and

{fa, k
i→j}i∈Nj , k∈Z+

0
, respectively.

The time-line of the task execution in the system is presented in Figure

2. At rs, ki , the data xki = xi

(

rs, ki

)

is transmitted. The black block repre-

sents the data transmission over the network. The blue block represents the
execution of the lth computation in Tj , which is triggered by the reception
of xki . The green block represents the transition of the output of Tj back to
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the plant. The yellow block represents the actuation of the sub-input. As a
result, rs, ki ≤ f s, k

i ≤ rc, ki→j ≤ fa, k
i→j holds for any k ∈ Z

+
0 .

Figure 2: Time-line of tasks

This time-line shows that the impact of xki through uj appears in the

plant over the time interval from fa, k
i→j to fa, k+1

i→j . By defining x̂i→j(t) = xki

for any t ∈
[

fa, k
i→j, f

a, k+1
i→j

)

, we have

uj(t) = Kj(x̂Nj→j(t)), (3)

where x̂Nj→j(t) = {x̂i→j(t)}i∈Nj
and Kj : R

|Nj | → R is the control law with
Kj(0) = 0. The overall control input is then

u(t) =







u1
...
um






=







K1(x̂N1→1(t))
...
Km(x̂Nm→m(t))






= K

(

〈x̂i→j(t)〉j∈M, i∈Nj

)

. (4)

The objective of this paper is to identify the real-time constraints in the
communication and computation that guarantee asymptotic stability of the
overall NCS.

2.3. Assumptions

Assumption 1. There exist smooth, positive definite functions V, β : Rn →
R

+
0 , continuous functions ψ : R+

0 × R
+
0 → R, and class K functions α1, α2,

φ : R+
0 → R

+
0 such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (5)

∂V (x)

∂x
F
(

x,K
(

〈x̂i→j〉j∈M, i∈Nj

))

≤ −β(x)φ(‖x‖) + β(x)ψ
(

‖x‖, ‖〈x̃i→j〉j∈M, i∈Nj
‖
)

(6)

hold for any x ∈ R
n and x̂i→j ∈ R, where x̃i→j , xi − x̂i→j.
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Remark 2. This is a weaker assumption than input-to-state stability (ISS)
with respect to x̃i→j. If β ≡ 1 and ψ only depend on x̃i→j, but are independent
of x, inequality (6) will be reduced to an ISS condition from the measurement
error x̃i→j to the state x.

Assumption 2. The functions φ−1(s) and ψ(a, s) in Assumption 1 are lo-
cally Lipschitz with respect to s, i.e. given a compact set Ω ⊂ R

+
0 , there exist

L, B ∈ R
+ such that the functions φ : R+

0 → R
+
0 , ψ : R+

0 × R
+
0 → R satisfy

φ(s) ≥ Ls and ψ(a, s) ≤ Bs, ∀s, a ∈ Ω. (7)

Remark 3. The functions V , φ, ψ and the constants L, B can be designed
in a distributed way. The detailed procedure can be found in [7].

Assumption 3. For any i ∈ N , Fi is locally Lipschitz with respect to x and
x̂i→j, i.e.

‖Fi

(

x, {Kj(x̂Nj→j)}j∈Ai

)

‖ ≤ aθi ‖x‖+
∑

j∈Ai, s∈Nj

bθs→j‖x̂s→j‖ (8)

holds for any x ∈ {x ∈ R
n | ‖x‖ ≤ θ} and x̂i→j ∈ {x̂i→j ∈ R | ‖x̂i→j‖ ≤ θ}.

3. Decentralized Event-Triggered Data Transmission

This section introduces the decentralized event-triggering scheme that
triggers the data transmission. In this scheme, the ith event generator, Ei,
only has the access to xi(t). The (k+1)st transmission by Ei is released when
the logic rule

Ē1 ∧ Ē2 ∨ E3 (9)

is true, where

E1 : ‖xi(t)− xki ‖ < ρi‖xki ‖, (10)

E2 : t− rs, ki < Tmin
i , (11)

E3 : t− rs, ki ≥ Tmax
i , (12)

and ρi, T
min
i , Tmax

i ∈ R
+ will be determined in the next section. Mathemati-

cally, we see that

rs, k+1
i =

min
t≥r

s, k
i

{

t | (‖xi(t)− xki ‖ ≥ ρi‖xki ‖) ∧ (t− rs, ki ≥ Tmin
i ) ∨ (t− rs, ki ≥ Tmax

i )
}

.
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Remark 4. The introduction of E1 is to limit the measurement error xi(t)−
xki . The logic rule E2 is to enforce the minimal transmission period of Ei to be
Tmin
i . In this way, continuous transmission can be avoided, which cannot be

guaranteed by the scheme in [7]. The introduction of E3 is for the safety of the
NCS. It requires that Ei transmits at least every Tmax

i unit-time, where Tmax
i

can be arbitrarily chosen. In general, we choose Tmax
i > Tmin

i ; otherwise, if
Tmax
i ≤ Tmin

i , then Ei’s the transmission release will always be triggered by
the satisfaction of E3, since Ē1 ∧ Ē2 will never be true before E3 is true. In
that case, the transmission becomes periodic with the period Tmax

i .

Remark 5. The rule in (9) means that Ei releases a transmission either
when inequalities (10) and (11) are both violated (when Ē1 ∧ Ē2 is true) or
it has been Tmax

i unit-time since the last transmission release by Ei (when E3

is true). If Ē1 ∧ Ē2 becomes true first, we have either

‖xi(t)− xki ‖ ≤ ρi‖xki ‖, ∀t ∈
[

rs, ki , rs, k+1
i

]

or rs, k+1
i − rs, ki = Tmin

i .(13)

If E3 becomes true first, then rs, k+1
i −rs, ki = Tmax

i , which means E2 is violated
since Tmax

i > Tmin
i . In this case, E1 must hold; otherwise Ē1 ∧ Ē2 will be

true before E3 is. Consequently, inequality (10) must hold at rs, k+1
i . To

summarize, this triggering scheme can guarantee that the statement in (13)
is true during the runtime.

Remark 6. This is indeed a hybrid triggering scheme. When E1 is violated
too frequently (which may be because that ρi is too small or the measurement
error grows too fast), Ē1 becomes true before Ē2 does. In this case, the
violation of E2 triggers the release, and the scheme switches to a periodic
task model with the period Tmin

i . When it takes very long time for E1 to be
violated, E3 becomes true before Ē1 does, which means that the satisfaction
of E3 triggers the release, and the scheme switches to another periodic task
model with the period Tmax

i . Other than these two cases, if the release is
triggered by the violation of E1, it turns out to be a traditional sporadic
event-triggered model.

4. Real-Time Constraints on Communication and Computation

This section discusses the real-time constraints for the guarantee of asymp-
totic stability. We identify the parameters in the event-triggering scheme ρi,
Tmin
i , Tmax

i , and derive bounds on the delays using a Lyapunov approach.
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The analysis starts from inequality (6). Let x̃i→j(t) = xi(t)− x̂i→j(t) for any
j ∈ M and i ∈ Nj. Inequality (6) in fact implies that for any t ≥ 0 the
following inequality

V̇ =
∂V (x)

∂x

∣

∣

∣

∣

x=x(t)

F
(

x(t), K
(

〈x̂i→j(t)〉j∈M, i∈Nj

))

≤ −β(x(t))φ(‖x(t)‖) + β(x(t))ψ (‖x(t)‖, ‖〈x̃i→j(t)〉‖) (14)

holds. It is easy to see from this inequality that if the communication and
computation conditions are perfect (x̃i→j(t) ≡ 0), then V̇ ≤ −β(x(t))φ(‖x(t)‖),
since ψ(s, 0) ≤ 0 holds for all s ∈ R

+
0 per Assumption 2. Under imperfect

conditions, we need to limit the impact of ψ on V̇ . To do this, the first step
is to estimate the value of ‖x̃i→j(t)‖, which is ‖xi(t)− x̂i→j(t)‖. Recall that
x̂i→j(t) = xki for all t ∈

[

fa, k
i→j, f

a, k+1
i→j

)

. So, we first examine ‖xi(t)−xki ‖ over

this time interval.

Lemma 1. Consider the NCS in (1) – (3) with the logic rule in (9), where
ρi, T

max
i , Tmin

i ∈ R
+ are arbitrarily selected. Subject to Assumption 3, given

i ∈ N and k ∈ Z
+, if there exists θ ∈ R

+
0 such that ‖x(t)‖ ≤ θ and

‖x̂i→j(t)‖ ≤ θ hold for any t ∈
[

rs, ki , fa, k+1
i→j

)

, then

‖xi(t)− xki ‖ ≤ max
{

ρi‖xki ‖, θiTmin
i

}

+ θi∆i→j (15)

for any t ∈
[

rs, ki , fa, k+1
i→j

)

, where

θi =
(

aθi +
∑

j∈Ai, s∈Nj
bθs→j

)

θ, (16)

aθi , b
θ
s→j are Lipschitz constants of Fi, and ∆i→j = supk

{

fa, k
i→j − rs, ki

}

.

With the bounds on ‖x̃i(t)‖, we are able to further bound V̇ and show
the uniform ultimate boundedness of the system.

Lemma 2. Consider the NCS in (1) – (3) with the logic rule in (9), where
Tmax
i , Tmin

i ∈ R
+ are arbitrarily selected. Let Assumptions 1 – 3 hold. Also

assume that there exists a positive constant θ such that ‖x(t)‖ ≤ θ and
‖x̂i→j(t)‖ ≤ θ hold for any t ≥ 0. If ρi ∈ (0, 1) satisfies

Bmax
i∈N

{

ρi
√

|Mi|
1− ρi

}

< L, (17)
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where L,B ∈ R
+
0 are defined in inequalities (7), and Mi ∈ M is the index

set of control tasks that can receive the information from Ei, then there exists
T > 0 such that ‖x(t)‖ ≤ α−1

1 ◦ α2 (σθ) holds for all t ≥ T , where

σ =
B‖〈ci(Tmin

i +∆i→j)〉‖
L−Bmaxi∈N

{

ρi

√
|Mi|

1−ρi

} and ci =
aθi+

∑

j∈Ai, s∈Nj
bθs→j

1−ρi
. (18)

Lemma 2 means that the resulting event-triggered NCS is uniformly ulti-
mately bounded. However, before using Lemmas 1 and 2, we need to verify
the boundedness of ‖x(t)‖ and ‖x̂i→j(t)‖. The following Lemma shows that
by bounding Tmin

i and ∆i→j , the state trajectory x(t) will fall into a compact
set Λ defined by Λ = {x ∈ R

n | V (x) ≤ V (x0)}, which, along with inequality
(5), implies

‖x̂i→j(t)‖ ≤ sup
t≥0

‖x(t)‖ ≤ α−1
1 ◦ V (x0) = θ. (19)

Lemma 3. Consider the NCS in (1) – (3) with the logic rule in (9). Let
Assumptions 1 – 3 hold. Given θ ∈ R

+
0 defined in (19), if Tmax

i ≥ Tmin
i , and

ρi ∈ (0, 1), Tmin
i ∈ R

+ satisfy inequality (17) and the following inequality

σ <
α−1
2 ◦ V (x0)
α−1
1 ◦ V (x0)

, (20)

where σ ∈ R
+
0 is defined in (18), then x(t) ∈ Λ for all t ≥ 0.

Lemma 3 provides the condition in inequality (20) that guarantees x(t) ∈
Λ. It means that ‖x(t)‖ ≤ θ = α−1

1 ◦ V (x0) for all t ≥ 0. Therefore,
with Lemma 2, we know that the condition in (20) ensures uniform ultimate
boundedness of the system with the ultimate bound α−1

1 ◦ α2(σθ). It is
important to note that despite the fact that the state trajectory is inside
Λ, the obtained ultimate set in Lemma 3, given by {x ∈ R

n | ‖x‖ ≤ α−1
1 ◦

α2(σθ)}, is not necessarily inside Λ. To obtain asymptotic stability we need
the ultimate set be inside Λ, in which case the ultimate bound will eventually
shrink to the origin. Therefore, another condition, stronger than inequality
(20), is needed to enforce the ultimate bound be inside Λ. This result is
formally stated in the following theorem.

Theorem 1. Assume that all the hypotheses in Lemma 3 hold except the
inequality in (20). Also, assume that there exist a class K function κ :
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R
+
0 → R

+
0 and a positive constant µ ∈ (0, 1) such that for any s ∈ R

+
0 , the

inequalities

α−1
1 ◦ α2(s) ≤ µκ(s) and κ(µs) ≤ µκ(s) (21)

hold. If the following inequality

κ
(

σα−1
1 ◦ V (x0)

)

< α−1
2 ◦ V (x0) (22)

holds, where σ is defined in equation (18), then the event-triggered NCS is
asymptotically stable.

Remark 7. The introduction of E3 in (12) ensures that the transmission of
the states does not stop when the ultimate bound is achieved, i.e. when the
state is inside an ultimate set. Otherwise, it is possible that x(t) is inside
the ultimate set, but x̂i→j(t) stays outside this set, in which case the proof of
Theorem 1 will fail.

Remark 8. Theorem 1 proves asymptotic stability of the NCS. However,
notice that V̇ ≤ 0 does not have to hold for all t ≥ 0. In fact, it is possible
that V̇ ≥ 0 from the moment when the state enters the ultimate set to the
first time when x̂i→j(t) is inside Λk, for all i ∈ N and j ∈ Ai. However,
because x(t) is bounded, the growth rate of V (t) is bounded. Other than these
intervals, V̇ ≤ 0 always holds. Theorem 1 indicates that although V (t) may
temporarily increase, it will eventually converge to zero. This is consistent
with the stability theory of hybrid systems [9].

Remark 9. With inequalities (5) and (21), one can verify that inequality
(22) implies the satisfaction of inequality (20). Inequality (22) can be re-
written as

σ =
B
√

∑

j∈M

∑

i∈Ni
c2i (T

min
i +∆i→j)2

L−Bmaxi∈N

{

ρi

√
|Mi|

1−ρi

} <
κ−1◦α−1

2
◦V (x0)

α−1

1
◦V (x0)

. (23)

It is obvious that for any class K function κ(s), we can always find positive
Tmin
i and ∆i→j ensuring inequality (22).

Remark 10. Inequality (22) (or (23)) places a real-time constraint on com-
munication/computation tasks. It requires the weighted sum of transmission
periods and allowable delays to be bounded. One major difference of this result
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from the prior work [7] is that the work in [7] only provides a local tradeoff
relation, i.e. the tradeoff between the ith event generator Ei’s transmission pe-
riods and its associated allowable delays, while this condition suggests a global
tradeoff, i.e. the tradeoff between all transmission periods and all kinds of al-
lowable delays. It indicates a relation between the system stability and the
total communication and computational resources. The condition in [7] is a
special case of our stability condition by assuming that κ is a linear function
(α−1

1 ◦α2 is locally Lipschitz) and the sampled state information is consistent
in the system.

Remark 11. The task periods generated by this scheme will not be small
because they are mostly generated by E1. The minimal task period Tmin

i might
be small, but it is only for the purpose of providing a theoretical low bound on
the task periods, which the work in [7] did not provide. By setting Tmin

i = 0,
the scheme in [7] is recovered.

5. An Illustrative Example

This section uses a simple example to illustrate how to apply the proposed
decentralized event-triggering scheme. Consider the rotating rigid spacecraft
model [10] given by

J1ẋ1 = (J2 − J3)x2x3 + u1

J2ẋ2 = (J3 − J1)x3x1 + u2

J3ẋ3 = (J1 − J2)x1x2 + u3,

where x1, x2, x3 are the components of the angular velocity vector along the
principal axes, u1, u2, u3 are the torque inputs applied about the principal
axes, and J1, J2, J3 are the principal moments of inertia. In the simulations,
we set J1 = 1, J2 = 2, and J3 = 3.

The controller is given by

u1(t) = −x̂1→1(t)− x̂2→1(t)
2 − x̂2→1(t)x̂3→1(t)

u2(t) = −1

2
x̂2→2(t) +

1

2
x̂1→2(t)x̂2→2(t)

u3(t) = −1

3
x̂3→3(t) +

1

3
x̂1→3(t)x̂2→3(t).
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Therefore,

A1 = {1}, A2 = {2}, A3 = {3},
M1 = {1, 2, 3}, M2 = {1, 2, 3}, M3 = {1, 3},
N1 = {1, 2, 3}, N2 = {1, 2}, N3 = {1, 2, 3}.

Consider the Lyapunov function V (x) = x21 + 2x22 + 3x23. The initial
condition x0 satisfies ‖xi(0)‖ ≤ 1 for i = 1, 2, 3, which means θ = α−1

1 ◦
V (x0) ≤

√
6. Then, we have

V̇ ≤ −2‖x‖2 + 17.8156‖x‖‖〈x̃i→j〉‖

and the parameters in Assumption 2 and 3 are

L = 2, B = 17.8156,

aθ1 =
√
6, bθ1→1 = 1, bθ2→1 =

√
6, bθ3→1 =

√
6,

aθ2 =
√
6
2
, bθ2→2 =

1
2
, bθ1→2 =

√
6
2
,

aθ3 =
√
6
3
, bθ3→3 =

1
3
, bθ1→3 =

√
6
6
, bθ2→3 =

√
6
6
.

To satisfy the condition in inequality (17), we choose ρ1 = ρ2 = 0.05 and
ρ3 = 0.06. The condition in inequality (22) is then

47.4808
∥

∥

〈

ci(T
min
i +∆i→j)

〉∥

∥ < 1/3,

with c1 = 8.7879, c2 = 3.1047, and c3 = 2.0918. To satisfy inequality (22),
one possible solution is

Tmin
1 = 0.0001, Tmin

2 = 0.0002, Tmin
3 = 0.0005,

∆1→j = 0.0002, ∀j ∈ M1,
∆2→j = 0.0003, ∀j ∈ M2,
∆3→j = 0.0010, ∀j ∈ M3.

We run the event-triggered system for 10 seconds with Tmax
i = 1 for any

i ∈ N . In this simulation, we assume that the task delays are random, but
bounded by ∆i→j given above. The simulation results show that the system is
asymptotically stable. The transmission periods of x1 (cross), x2 (diamond),
and x3 (circle) are shown in Figure 3. From the plot, we can see that the
periods are always greater than 0.06, which is much larger than the minimal
periods. It means the transmissions are mostly triggered by E1. It shows that
the periods generated by our scheme are not conservative. Also note that the
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Figure 3: Transmission periods in the event-triggered NCS

periods vary in a wide range before the system approaches its equilibrium. It
demonstrates the ability of event-triggering in adjusting transmission periods
in response to variations in the system’s states. Also notice that the periods
are always greater than a positive constant. This is important because it
shows that our scheme can avoid infinitely fast transmission.

6. Summary

This paper considers NCSs, where all tasks, including communication
tasks and computational tasks, are executed asynchronously. A decentral-
ized event-triggering scheme is proposed for this framework, which is guar-
anteed to have strictly positive transmission periods. We provide sufficient
conditions under this scheme that ensure asymptotic stability of the resulting
event-triggered NCS. These conditions suggest a tradeoff among all minimal
task periods and bounds on all types of allowable delays.

There are several open problems in this framework, such as considering
quantization effects, output-feedback schemes, to name a few. One impor-
tant problem is how to take advantage of the conditions in inequalities (17)
and (22) to schedule the data transmissions and computation. One possible
way is to consider earliest deadline first (EDF) algorithm [11]. The entire
schedulability problem can be treated as two coupled sub-problems: one is

14



the schedulability of the data transmission and the other one is the schedula-
bility of the computation tasks. The periods of computation tasks depend on
the communication protocols. The minimal transmission period Tmin

i can be
used for the schedulability analysis. Upon obtaining the schedulability con-
dition, we can combine it with the performance condition obtained in this
paper and optimize the utilization of the communication and computational
resources.
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Appendix A. Proof of Lemma 1

Proof. Since ‖x(t)‖ and ‖x̂i→j(t)‖ are bounded over
[

rs, ki , fa, k+1
i→j

)

, based

on equation (2), we have ‖ẋi(t)‖ = ‖Fi

(

x(t), {Kj(x̂Nj→j(t))}j∈Ai

)

‖. By
Assumption 3, Fi is locally Lipschitz. So we further re-write the preceding
inequality as

‖ẋi(t)‖ ≤ aθi ‖x(t)‖+
∑

j∈Ai, s∈Nj

bθs→j‖x̂s→j(t)‖

≤



aθi +
∑

j∈Ai, s∈Nj

bθs→j



 θ = θi,

where the last inequality is obtained using ‖x̂i→j(t)‖ ≤ ‖x(t)‖ ≤ θ. So
d
dt
‖xi(t) − xki ‖ ≤ θi holds for any t ∈

[

rs, ki , fa, k+1
i→j

)

. Solving this inequality

for any t ∈
[

rs, ki , rs, k+1
i

]

, we obtain ‖xi(t)− xki ‖ ≤ θi

(

t− rs, ki

)

.

By the event-triggering scheme with the discussion in remark 5, we know
that the condition in (13) holds. Combining this with the preceding inequal-
ity implies

‖xi(t)− xki ‖ ≤ max
{

ρi‖xki ‖, θiTmin
i

}

, ∀t ∈
[

rs, ki , rs, k+1
i

]

. (A.1)

Again, solving d
dt
‖xi(t)− xki ‖ ≤ θi for any t ∈

[

rs, k+1
i , fa, k+1

i→j

)

, we obtain

‖xi(t)− xki ‖ ≤ ‖xk+1
i − xki ‖+ θi

(

t− rs, k+1
i

)

≤ max
{

ρi‖xki ‖, θiTmin
i

}

+ θi∆i→j, (A.2)
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where we use inequality (A.1). Combining inequalities (A.1) and (A.2) com-
pletes the proof.

Appendix B. Proof of Lemma 2

Proof. Since ‖x(t)‖ ≤ θ and ‖x̂i→j(t)‖ ≤ θ for any t ≥ 0, we apply Lemma 1
to obtain

‖xi(t)− xki ‖ ≤ max
{

ρi‖xki ‖, θiTmin
i

}

+ θi∆i→j

≤ ρi‖xki ‖+ θiT
min
i + θi∆i→j,

which holds for all t ∈
[

rs, ki , fa, k+1
i→j

)

, where θi is defined in equation (16).

Then we have

(1− ρi)‖xi(t)− xki ‖ ≤ ρi‖xki ‖+ θiT
min
i + θi∆i→j − ρi‖xi(t)− xki ‖

≤ θi(T
min
i +∆i→j) + ρi‖xi(t)‖, (B.1)

which holds for all t ∈
[

rs, ki , fa, k+1
i→j

)

, and therefore for all t ∈
[

fa, k
i→j, f

a, k+1
i→j

)

.

We now consider V̇ at time t. For t ≥ 0, any j ∈ M, and any i ∈ Nj, there

must exist ki→j ∈ Z
+ such that t ∈

[

f
a, ki→j

i→j , f
a, ki→j+1
i→j

)

holds. Therefore, at

this specific time instant t, the control input in Tj is computed based on
{

x
ki→j

i

}

i∈Nj

. By equation (6), the time derivative of V at time t satisfies

V̇ ≤ −β(x(t)) (φ(‖x(t)‖)− ψ (‖x(t)‖, ‖〈xi(t)− x̂i→j(t)〉‖))
= −β(x(t))

(

φ(‖x(t)‖)− ψ
(

‖x(t)‖,
∥

∥

∥

〈

xi(t)− x
ki→j

i

〉∥

∥

∥

))

≤ −β(x(t))
(

φ(‖x(t)‖)− ψ

(

‖x(t)‖,
∥

∥

∥

∥

〈

θi(T
min
i +∆i→j) + ρi‖xi(t)‖

1− ρi

〉∥

∥

∥

∥

))

,

where the last inequality is obtained using inequality (B.1).
Since ‖x(t)‖ ≤ θ for any t ≥ 0, we can apply Assumption 2 to the

preceding inequality and obtain

V̇ ≤ −β(x(t))
(

L‖x(t)‖ − B

∥

∥

∥

∥

〈

θi(T
min
i +∆i→j)

1− ρi

〉∥

∥

∥

∥

− B

∥

∥

∥

∥

〈

ρi‖xi(t)‖
1− ρi

〉∥

∥

∥

∥

)

≤ −β(x(t)) (L‖x(t)‖ − d− Bp‖x(t)‖) (B.2)
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where p = maxi∈N

{

ρi

√
|Mi|

1−ρi

}

, d = B
∥

∥

∥

〈

θi(Tmin
i +∆i→j)

1−ρi

〉∥

∥

∥
, and the second

inequality is obtained using the fact
∥

∥

∥

〈

ρi‖xi(t)‖
1−ρi

〉∥

∥

∥
≤ p‖x(t)‖. Therefore there

must exist T ≥ 0 such that ‖x(t)‖ ≤ α−1
1 ◦ α2

(

d
L−Bp

)

holds for all t ≥ T , as

shown in [10, pp. 169]. With the definition of θi in equation (16), we know
d

L−Bp
= σθ, which implies ‖x(t)‖ ≤ α−1

1 ◦ α2 (σθ) for all t ≥ T .

Appendix C. Proof of Lemma 3

Proof. First, we prove that V (x(t)) ≤ V (x0) holds for all t > 0 by contradic-
tion. Suppose that there is a time instant t̄ > 0, such that V (x(t̄)) > V (x0).
Notice that before the first time when the inequality (10) is violated for any
i ∈ N , the inequality V̇ < 0 holds. Therefore, there must exist a time instant
t∗ ∈ (0, t̄) such that

V (x(t)) < V (x(t∗)) = V (x0), ∀t ∈ [0, t∗) (C.1)

V̇ > 0, ∀t ∈ (t∗ − ǫ, t∗], (C.2)

where ǫ is a small positive constant. These inequalities imply

x(t) ∈ Λ and ‖xi(t)‖ ≤ ‖x(t)‖ ≤ α−1
1 ◦ V (x0) = θ (C.3)

for all t ∈ [0, t∗]. Following a similar analysis as in the proof of Lemma 2, we
obtain

V̇ ≤ −β(x(t)) (L‖x(t)‖ − d− Bp‖x(t)‖) (C.4)

for all t ∈ [0, t∗], where p = maxi∈N

{

ρi
√

|Mi|
1−ρi

}

and

d = B

∥

∥

∥

∥

〈

θi(T
min
i +∆i→j)

1− ρi

〉∥

∥

∥

∥

.

By inequality (C.2), we know V̇ > 0 for any t ∈ (t∗ − ǫ, t∗]. Combining this
with the preceding inequality yields

0 < V̇ ≤ −β(x(t)) (L‖x(t)‖ − d−Bp‖x(t)‖)
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for any t ∈ (t∗ − ǫ, t∗], which implies

‖x(t)‖ < d

L−Bp

for any t ∈ (t∗ − ǫ, t∗]. Applying the definition of θi in (16) into d in the
preceding inequality yields

‖x(t)‖ <

α−1
1 ◦ V (x0)B

∥

∥

∥

∥

〈

aθi+
∑

j∈Ai, s∈Nj
bθs→j

1−ρi
(Tmin

i +∆i→j)

〉∥

∥

∥

∥

L− Bp

= σα−1
1 ◦ V (x0)

for any t ∈ (t∗ − ǫ, t∗], where σ is defined in equation (18). By inequality
(20), we have

σα−1
1 ◦ V (x0)

α−1
2 ◦ V (x0)

< 1.

Then we have ‖x(t∗)‖ < α−1
2 ◦V (x0), and therefore V (x(t∗)) ≤ α2(‖x(t∗)‖) <

V (x0), which contradicts the inequality (C.1). Therefore, V (x(t)) ≤ V (x0)
always holds.

Appendix D. Proof of Theorem 1

Proof. By inequalities (21) and (22), we know

σα−1
1 ◦ V (x0) ≤ α−1

1 ◦ α2

(

σα−1
1 ◦ V (x0)

)

≤ µκ
(

σα−1
1 ◦ V (x0)

)

< κ
(

σα−1
1 ◦ V (x0)

)

< α−1
2 ◦ V (x0).

Then by Lemma 3, we know x(t) ∈ Λ for all t ≥ 0, which means

‖x(t)‖ ≤ α−1
1 ◦ V (x0),

since α1(‖x‖) ≤ V (x) and ‖x̂i→j(t)‖ ≤ supt≥0 ‖x(t)‖ ≤ α−1
1 ◦ V (x0). So we

can apply Lemma 2 to show that there exists t1 > 0 such that

‖x(t)‖ ≤ α−1
1 ◦ α2

(

σα−1
1 ◦ V (x0)

)

≤ µκ
(

σα−1
1 ◦ V (x0)

)

≤ µα−1
2 ◦ V (x0) ≤ µα−1

1 ◦ V (x0)
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holds for any t ≥ t1, where the third inequality is obtained using inequality
(22). Since Si transmits at least every Tmax

i unit-time according to E3, we
know that there exists s1 ≥ t1 such that

‖x̂i→j(t)‖ ≤ µα−1
1 ◦ V (x0)

holds for all t ≥ s1. Then we can re-apply Lemma 2 to get the new ultimate
bound on ‖x(t)‖, i.e. there exists t2 > s1 such that

‖x(t)‖ ≤ α−1
1 ◦ α2

(

µα−1
1 ◦ V (x0)

)

≤ µκ
(

µα−1
1 ◦ V (x0)

)

≤ µ2κ
(

α−1
1 ◦ V (x0)

)

≤ µ2α−1
2 ◦ V (x0) ≤ µ2α−1

1 ◦ V (x0)

holds for all t ≥ t2. Also, we know that there exists s2 ≥ t2 such that
‖x̂i→j(t)‖ ≤ µ2α−1

1 ◦ V (x0) for any t ≥ s2.
Keeping this procedure, we know that there exists sk > 0, such that

‖x(t)‖ ≤ µkα−1
1 ◦ V (x0)

holds for all t ≥ sk. Since µ ∈ (0, 1), as k → ∞, the preceding inequality
implies x(t) → 0, which implies asymptotic stability of the NCS.
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